Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion and Machine Learning
نویسندگان
چکیده
منابع مشابه
Consistent Discretization of Linear Inverse Problems using Sparse Stochastic Processes
We introduce a novel discretization paradigm and specify MAP estimators for linear inverse problems by using the theory of continuous-domain sparse stochastic processes. We characterize the complete class of admissible priors for the discretized version of the signal and show that the said class is restricted to the family of infinitely divisible distributions. We also explain the connections b...
متن کاملInverse modeling of HEM data using a new inversion algorithm
Helicopter-borne frequency-domain electromagnetic (HEM) surveys are used extensively for mineral and groundwater exploration and a number of environmental investigations. To have a meaningful interpretation of the measured multi- frequency HEM data, in addition to the resistivity maps which are provided in each frequency or for some particular depth levels, it is a necessity ...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A Stochastic Method for Solving Inverse Problems in Epidemic Modelling
We describe a stochastic optimization method that can be used to solve inverse problems in epidemic modelling. Although in general it cannot be expected that these inverse problems have solutions and that possible solutions can be approximated by local optimization methods, our optimization method worked well when applied to a model for the epidemics caused by Respiratory Syncytial Virus (RSV) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOM
سال: 2020
ISSN: 1047-4838,1543-1851
DOI: 10.1007/s11837-020-04432-w